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Convexity and Concavity of Eigenvalue Sums 
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It is well known that a(H), the sum of the negative eigenvalues of a Hermitian 
matrix H, is a concave and increasing function of H. In contrast to this, we 
prove that for A nonsingular Hermitian and P positive definite, the function 
P ~ o(AP)= ~7(P1/ZAp1/2) is convex and decreasing. Several other results of this 
nature are also proved. 
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Eigenvalue inequalities play an important role in quantum mechanics. A 
person who contributed much to the development of this subject was 
Jerome Percus, and it is with this thought in mind that we dedicate this 
article to him on the occasion of his 65th birthday. 

A quantum mechanical Hamiltonian or density matrix is an N x N  
Hermitian matrix (we deal here with the finite-dimensional case for 
simplicity) and we shall denote such a matrix generically by H. It is well 
known that the sum of the lowest n eigenvalues of H (for any n >/1), as 
well as a(H), the sum of all the negative eigenvalues of H, are concave 
functions of H. These facts follow easily from the variational principle. 
Examples of their usefulness include the theory of crystallization in the 
Falicov-Kimball (or static) model, (I) the monotonicity of electronic 
energies with respect to molecular displacement, ~2) the theory of molecular 
binding, 3 and the theory of density matrices and their mixing proper- 
ties. (6'7) In general, if H is a "one-particle Hamiltonian," then - 2 a ( H )  is 
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the maximum binding energy of spin-l/2 fermions, whence the importance 
of a(H) for the quantum mechanical many-body problem. 

It was with some surprise, therefore, that we discovered that a 
seemingly similar eigenvalue problem changes concavity into convexity. 
Instead of a(H) for H Hermitian, we investigated a(AP), where A is some 
fixed Hermitian matrix with n negative and N - n  positive eigenvalues, 
and P is an arbitrary positive-definite matrix. [Since spectrum(AP)= 
spectrum(P~/ZAPm), the eigenvalues of AP are all real.] As a function of 
P, the sum of the negative eigenvalues ~(AP) is convex! This conclusion 
also has generalizations that will be given later. Since there are so few 
general theorems available about the dependence of eigenvalues on 
adjustable parameters, we present our result in the hope that it may 
eventually be of use in quantum mechanics. Actually, we discovered it in 
connection with our investigation of the Scott conjecture for molecules. 

The a(AP) problem may seem artificial compared to the a(H) 
problem, but actually they are closely related. Suppose c (  is a Hilbert 
space with inner product ( . , . )  and that we consider a finite-rank, self- 
adjoint linear operator H whose action on a vector f is given in the form 

N 

Hf= ~ ei(g~,f)g~ (1) 
i ~ 1  

where the gi are N linearly independent vectors in • and ei= - 1  for 
i=l,...,n and ei= +1 for i=n+l,...,N. The operator H in the form (1) 
can easily arise as an approximation (or a bound) to some given 
Hamiltonian of interest. If the gi are not orthogonal to each other, the 
computation of the eigenvalues of H may not be trivial. The simplest way 
to compute them is to write an eigenvector f in the subspace spanned by 
the gi as 

N 

f =  ~ vigi (2) 
i = 1  

and then use the linear independence of the g, to conclude that Hf = 2f  is 
equivalent to 

APV=2V (3) 

with V= (vl,..., vN), A = diag(el ..... eN), and P~ =  (gi ,  gj).  Thus, while the 
nonzero eigenvalues of H and of AP are identical, the quantity 
cr(H) = ~(AP) will be seen to be concave in H, but convex in P! 

Before stating our results formally, let us first state some definitions 
and well-known facts. We set 
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JfN = { Hermitian N x N matrices } 

~N = {positive-definite matrices e ~N} 

21(H) ~< 22(H) ~< ... ~< 2N(H) are the eigenvalues of H e  YfN (4) 

For 1 ~< k ~< N we define 
k 

j = l  

N 

a(k~(H) =-- ~ 2j(H) = Trace H -  a(k)(H) (6) 
j - - N - - k + 1  

For c e R we define 

N 

gc(H) -= Z min{2 j (H) -c ,  0} (7) 
j ~ l  

N 

a"(H) = ~ m a x { 2 j ( H ) - c , O } = T r a c e H - c N - a c ( H )  (8) 

In particular, g( H) = go(H). 
The following, (9)-(13), are well-known easy consequences of the 

rain-max principle (for example). They are listed here for comparison with 
our AP results in the theorem below: 

H~---~ a(g)(H) is concave and increasing 

H~--~ o-(k)(H) is convex and increasing 

H~-~ gc(H) is concave and increasing 

H ~-, gC(H) is convex and increasing 

H ~  2j(H) is increasing for each j 

(9) 

(10) 

(11) 

(12) 

(13) 

{ Here, H ~ f ( H )  is concave means f ( s H  + (1 - s) B) >~ sf(H) + (1 - s) f (B) ,  
while f ( H )  is convex means - f ( H )  is concave. H~--~f(H) is increasing 
(resp. decreasing) means B-- H e  ~ :  implies f ( B )  >1 f ( H )  [resp. 
f ( B )  ~< U(H)]. } 

Now let us fix N and some nonsingular A e ~N. Let n e {0,..., N} be the 
number of negative eigenvalues of A (whence A has N - n  positive eigen- 
values). For each P e ~  N, the eigenvalues of AP are identical to those of 
P1/2Ap1/26 JY~N and we label these eigenvalues as follows: 

ktn(AP) <~ #n- ~(AP) <~ ... <~ ktl(AP) < 0 < 71(AP) <~ 72(AP) <~ . "  

-.. ~ 7N-,(AP) (14) 
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Implicit in (14) is the assertion that AP has exactly n negative and N - n  
positive eigenvalues. This follows from Sylvester's law of inertia or the 
min-max principle and we omit the proof. Note that the labeling in (14), 
in contrast to that in (4), is "from zero outward." 

For 1 ~< k ~< n we define 

For 1 <~k<~N-n 

k 

#(k)(AP) = - ~ #i(AP) (15) 

k 

#(k~(AP) =-- ~ vj(AP) (16) 
j = l  

Our main theorem, which contrasts the AP problem with (9)-(13), is 
the following. 

T h e o r e m .  Let A e JfN be nonsingular with n ~<N negative eigen- 
values. Let P e ~N' Then 

P ~ #(k)(AP) is convex and decreasing (17) 

P ~ #(k~(AP) is concave and increasing (18) 

P ~ ao(pI/2Ap 1/2) = 5(n)(AP) = a(AP) is convex and decreasing (19) 

P ~-~ a~ 1/2) = #~v-")(AP) is concave and increasing (20) 

P ~ #j(AP) is decreasing and P ~ yj(AP) is increasing (21) 

Remark. In contrast to the fact that the largest negative eigenvalue 
of AP is convex in P, the smallest negative eigenvalue is not concave in P. 
The n = 1 case shows this clearly. Also, there does not appear to be an 
analogue of (11) and (12) with c r  in the AP case. 

The theorem is an immediate consequence of the following variational 
characterization of the eigenvalues of AP. The derivation of (17), for exam- 
ple, from (22) and (24) is easy: (22) implies that each #j(AP) in a(k)(AP) 
is decreasing, while (24) displays 5(k)(AP) as the supremum of a family of 
linear functions. 

I . emma.  The negative eigenvalues #j(AP) are characterized by the 
following rain-max principle: 

#j(AP) = min max ~" (0, P~)  } (22) ~-1 o ((O,A-l~b)  " O e C N ' ( O ' A  ll]/)<0'l//J-J~J--1 

Here (.,-) is the usual inner product in C u, a~,Sj_ 1 is any ( j -  1 )-dimensional 
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subspace of C u, and the orthogonality 2 is the usual one, i.e., (~, ~b) = 0 for 
all ~b ~ S j  1. The positive eigenvalues are characterized by 

7 s ( A P ) = m a x m i n ~  (O'PO) �9 @GcN,(@,A l O ) > 0 , ~ _ k ~ d j _ j }  (23) 
~_l ~ ((0,  A-lO) 

The eigenvalue sums #(k~ and cr (k) are given by 

= (Oi, PSi) " ~', ~ cU, (~,, A -  ~.j, i,j=l ~ (24) #(k)(AP) max --i=1 

6(k~(AP)=min (Oi, PO,) " O~eCN,($, ,A 1,1,)k~,j ~,j=1~>Ik (25) 
i 1 

A-l,l, ~ k The requirement ($~, v.s~ ~s= 1 ~> Ik is meant in the form sense, i.e., the 
k x k  Hermitian matrix with elements (O,, A l~ks)-6ij is nonnegative 
definite. 

Proof. If suffices to prove (22) and (24), because (23) and (25) follow 
from this by replacing A by - A .  

To prove (22), let H=P1/2AP 1/2 and M=P-1 /2A  1P-1/2=H 1. 
Since #j(AP) is the j t h  negative eigenvalue of H counting downward from 
zero, it follows that {#j(AP)} -~ =)v(M)  in the usual ordering, (4), of the 
eigenvalues of M. By the usual max-rain principle, 

2J(B)=maxmin ~(~-M~) " O#q~CN'(k  ~ ~ ( ( (b ,~)  (26) 

=max~_~ minr ~ " ( o ' A - l o ) (  (~, P$)  " (~, A - ~ O ) < 0 ,  ~ _l_ ~ j -1}  (27) 

Equation (27) follows from (26) by setting ~ = P1/2(k and by noting that the 
set of ~b's in (26) can be restricted to those satisfying the additional 
condition (~b, M~b)<0; this is possible because )v (M)<0 and hence, for 
every ~ 1, there is a ~b for which (~b, M~b) < 0. Now, for any family F of 
negative reals we have 

1 - inf {1: x s F }  (28) 
s u p { x e F }  

By applying (28) twice to (27), we obtain (17). 
To prove (24), we first remark that the right side of (24) (call it X(~)) 

is 

X(K) = --min ((bi, H2(~ " ((bi, H~bj)l ~=1 ~< --Ik (29) 
i 1 
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This follows from (24) by setting Oj=API/~Oj. Let H denote the 
orthogonal projector onto B n c C  u, the negative eigenspace of H. We 
can then write q~j=fj+gj with ~ = H 0 j ,  g j = 0 j - H O j .  Consequently, 
(~,, H~/) = (fi, Hfj) + (gi, Hgj) and, in the sense of forms, 

(fi, k Hs j= 1 ~< - L  (30) 

since (~bi, H~bj) ~j= 1 ~< --Ik and (g~, Hg/) is nonnegative definite. Likewise 

(0~, H2~i) = (fi, H2f~) + (g~, H2g~) >>- (f~, H2f~) (31) 

From (30) and (31) we see that matters are improved by replacinig ~b~ by 
H~b,, and hence 

X(k~=-rain (~,L2~b~) �9 (~i,L~bfll ~f,j=~>~Ik,~b~eBncC u (32) 
i 1 

with L = - H H H  >~ O. The usual variational principle can be stated in the 
following generalized form for matrices I2 ~ ~ "  

cr(k~(s ~--~1 (Z~'s " ()~i's ~J='~>Ik'zieC" (33) 

By a change of basis, the min {-} in (32) is the same as the min {-} in (33) 
with s taken to be the restriction of L to its invariant subspace B ~. Thus, 
X(k~= -a(k~(s = ~(k~(AP). | 
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